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- Scientific interest may include:

e joint evolution of the measurement and event-time processes;

e adjustment of inferences about longitudinal measurements to allow
for possibly outcome-dependent dropout;

e use of intermediate longitudinal measurements as surrogate for -time -
to terminating event.



Example: schizophrenia trial

e multi-centre, double blind, parallel group study
e 523 patients randomly allocated amongst six treatments:

— placebo
— halopendol 20mg (standard therapy)

\  — risperidone 2mg, 6mg, 10mg and 16mg (novel therapy)
° response variable was a measure of psychiatric disorder (PANSS)

e measurements intended to be taken at weeks:
—1 (selection), 0 (baseline), 1, 2, 4, 6, 8

. @ 270 dropouts, for following stated reasons:

Abnormal lab result 4
Adverse experience 26
Inadequate response 183
Inter-current illness 3

Lost to follow-up 3
Other reason - 7
Uncooperative 25

Withdrew consent 19

'Clinical objective

achieve reduction of at least 20% in mean PANSS score
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PrOposed class of modéls

1. Latent process
W(t) = {Wi(t), Wa(D)} a.biyarié,te- Gaussian process

o« Wilt) = Di(t)Ue + Vi(t)
o {Vi(t); Va(t)} : bivariate stationary Gaussian process

o (U, U,) : multivariate Gaussian random effects

W (t) realised independently for each subject

2. Measurement model

Yij = pilti) + Wialtiy) + Zi;

o Z;; ~ N(0,7%)
o ui(tiy) = X1i(ti) P



' 3. Intensity model

| )\i(t) = R»(t) ( ) (X2z( )ﬁ2 + Wm)
o oft) = .non—para,metric baseline intensity
‘o Ri(t) = “at risk” _iﬁdicator |
e typical choice for F might be F (12) = exp{Wa(t)}

4. Special case for preliminary analysis

Wa(t) = YW, (t)

ey ~ ﬁ!-v\rv A maraTn oator or 1’\ -L'I TN AQQTITAD Sadc lﬁ+";0ﬂ

1T~
nence, 7y is a Singie Paralneuer WICH INeasures assodiation

between measurement process and event intensity.



Likelihood evaluatiéri

Notation
Y : measurement data

W : (bivariate) latent process

N : event history data. o \

" e Conditional independence: N LY |W

. Standard marginal for Y: L1(6,Y)

-

e Easy conditional distribution [W | Y|
e Standard conditional for [N | W]: Lo(6, N | W)

e = selection factorisation

L(0) = L1(6) x EwylLa(0, N | W)]

Requires infinite-dimensional integration wrt W7
'No - non-parametric specification for baseline hazard implies
~we only need W at event times |




A score test for association

e joint analysis of Y~ and }ﬁ computationally intensive
but separate a,na.lyses straightforward

e hence; may be useful to" conduct a preliminary- test of association
betweenY” and D |

e score test is based on slope of log-hkehhood at Hp: v =0 and T8
therefore obtainable from separate analyses of Y and D

- Reéulting test statistic is

v =£_:1/OT Eyys v [Wrs(t)|dMi(t)
where |

Mi(t) = Ni(t) — As(t) = Ni(t) — fy Ralu)e™d Ao(w)

N;(t) = number of s;; < t
R;(t) = “at risk” indicator
Ai(t) = £ Ai(s)ds

- Ap(t) = fLap(s)ds



Properties of score test

Derive Normal approximation to null distribution of score test statistic.

using either:

o direct calculation (test statistic as linear functional) |
o Ma,rt_ingéle central limit theorem (simpler, and gives similar result)

Simulation study with sample sizes comparable to risperidone
trial suggests:

e nominal size OK

® power increases with

e power increases with strength of serial correlation




Application to risperidone trial

- ObéerVed and-ﬁtted-méaﬁé
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Score test: N(0,1) = 9.86
What if we include adjustment for baseline?

Score test: N(0,1) = 9.30



Estimation in presence of association
L(6) = Ln(0) x Bwy[L2(6, N | W)]

3. 'I'ntensity model re-visited

Ai(t) = Ri(t)ew(t)F (ng( B2+ Wai)
" e ap(t) = non-parametric baseline intensity
e R;(t) = “at risk” indicator
o F(m) = exp{Wa(t)}

Options include:

e adopt fully parametric approach and use MCMC
e two-stage plug-in method
e non-iterative Monte Carlo evaluation

e quasi-EM



Two-stage plug-in method

. Repla,ce Ewy[Le(0, N | W) with Ly, N | EW[Y[W]).
o Use partial likelihood PLg in place of L‘z

- Maximise |
L) = ( ) X PLz(é’ N | Bwiy[W])

Simulation experiment:

o Mean %
Method =0 y=01 v=0.25 v=05

EW] 0.01 008 0.23 0.43 sd~0.08



Non-iterative Monte Carlo evaluation

. Likelihéod/ partial likelihood
L(0) = L1(6) x Ewyy[PLy(0, N | W)}

e Estimaté E[PLy] by Monte Carlo Integration
o More é_tablé‘ to estimate Eflog PLy|?

Simulation experiment:

Mean 4
Method =0 vy=01 v=025 v=05

E[W] 001 008 023 043 sd0.08

~

E[PL,y] - -0.01 0.07 0.18 0.38 sd~0.08

Ellog PL;] -0.02 0.07  0.15  0.32 sd =006




Quasi-EM

e W occurs in PLs only through exp(W)
e EM algorithm: replace with Eywyy,nlexp(W)],
e Quaéi—EM : use EW]Y{GYP(W)] |

Simulation experiment:

Mean ¥4 -

E[W] 001 008 023 043 sd =~ 0.08
BlPL))  -001 007 018 038 sd~008
Eflog PLy) 002 007 015 032 sd=~0.06

Elexp(W)] 0.01 0.10  0.26 0.51 sd~0.09

Current work

e develop analogy with omitted frailty in survival modelling
e quantify difference between (WY, N ] and [WIY]

e extend modelhng framework — under quasi-EM estimation, no
particular advantage in restriction to Wy = yW}




‘Martingale theory (RH)
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N(t) is a counting process, with conditional intensity A(¢) such that
E[dN ()| F] = A(t)dt

where F; denotes history of N(t) up to t—

Cumulative intensity is

Alt) = fot A(s)ds
Theri, |

M(t) = N(t) — A(t)
is a martingale, with essential property that

E[M@)|F] = M(t—) ‘



Some properties

e Martingale central limit theorem: for large m,

m4 3 M(5) ~ NO,0(0)

for known v(t) o
o If M(t)isa martmgale and h(t) is any left—contmuous function then

fo s)dM(s)
is also a martingale, with variance |

/;{h(s)}zd./\(s)




Alternative variance calculation

() = S AL BappWEOING)
=y Covpsp (Was(t), Ws(s))dMi(£)dMi(s) }



| Powe_r' st udyl'

Simulation model:

e m =250 st lbjects n smgle group
e up to 4 measurements at times ¢ = 0, 10, 20, 30, censoring tlme T = 30
o u(t) =5+0.1, 02 = 0.25
e Wi(t) = U + V(¢) where:
— U ~ N(0, 02
— V() ~ SGP(0, mm(—lkl/am

& Ts7

— ¢ such that lag—lo correlation is 0.5 or 0.05

—oitoi=1

gy 0i p(10) oi+oip(10) y=0 y=01 v=025 7v=0.
05 05 05 0.75 004 022 090  1.00
0.05 0.525 004  0.10 067  1.00
08 02 05 090 008  0.21 092 1.00
0.05 0.81 006 020 08 100
02 08 0.5 - 0.60 006  0.18 074  1.00

0.05 0.24 0.06 0.08 0.36 0.94

e nominal size OK
e power increases with v

e power increases with strength of serial correiation
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